Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Katherine J. Hostetler, ${ }^{\text {a }}$ James S. Poole ${ }^{\text {a }}$ and Phillip E. Fanwick ${ }^{\text {b }}$
${ }^{\text {a D Department of Chemistry, Ball State University, }}$ Muncie, IN 47306, USA, and ${ }^{\text {b }}$ Department of Chemistry, Purdue University, 560 Oval Dr., W. Lafayette, IN 47907-2084, USA

Correspondence e-mail: pfanwick@purdue.edu

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.131$
Data-to-parameter ratio $=9.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-\{[3,5-Bis(methoxycarbonyl)-4,5-dihydro-1H-pyrazol-5-yl]methylamino\}pyridine 1-oxide monohydrate

The title compound, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, was isolated following the cycloaddition reaction of 4 -azidopyridine 1 -oxide with an excess of methyl acrylate. The compound arises from a reaction sequence whereby the expected triazoline product undergoes rearrangement and a second cycloaddition reaction to yield the title pyrazoline product without the presence of a strong base which is usually required for such transformations.

Comment

The title compound, (I), is formed by the thermal reaction of 4 -azidopyridine 1 -oxide with methyl acrylate. 1,3-Dipolar cycloaddition reactions of aryl azides, particularly phenyl azide and its derivatives, with alkenes and alkynes have been well studied. In general terms, the expected outcome of such a reaction is a triazole (in the case of alkynes) or triazoline (in the case of alkenes) compound (Patai, 1971; Sustmann \& Trill, 1972). However, under the reaction conditions employed, the triazoline compound generated from this reaction undergoes rearrangement to generate an diazoalkane intermediate, which in turn undergoes a second 1,3-cycloaddition reaction with methyl acrylate to generate the pyrazoline product. The X-ray crystal structure indicates that water co-crystallizes with the title compound, (I), in association with the N-oxide compound.

(I)

The tautomer shown in the ORTEP (Johnson, 1976) representation of the structure (Fig. 1) is consistent with the NMR data obtained for this compound. Peaks observed at 8.88 and 6.73 p.p.m. in d_{6}-dimethyl sulfoxide (DMSO) are not observed in d_{4}-methanol, indicating that these resonances correspond to labile $\mathrm{N}-\mathrm{H}$ protons (at the N 1 position of the pyrazoline ring, and N position of the aminopyridine 1-oxide fragment, respectively, confirmed by two-dimensional NMR experiments). Such reactions have been observed in substituted phenyl azides, but these have required the presence of a moderately strong base, such as 1,4-diazabicyclo[2.2.2]octane (DABCO), to catalyse the triazoline-diazoalkane rearrangement (Yadav et al., 2002). In this particular case, either water itself is sufficiently basic to catalyse the reaction, or no such base-catalysis is required.
\qquad

Experimental

A solution of 4-azidopyridine 1-oxide in methyl acrylate and acetonitrile (approximate 1:1 ratio) was deoxygenated by a thin stream of bubbling argon and heated at 333 K overnight. Slow evaporation of the solvent yielded crystalline chunks of the title compound which were isolated from the supernatant and characterized.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$	$V=742.57(15) \AA^{3}$
$M_{r}=326.31$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.459 \mathrm{Mg} \mathrm{m}^{-3}$
$a=6.0678(7) \AA$	$\mathrm{Mo}-K \alpha$ radiation
$b=8.7476(9) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$c=15.0449(18) \AA$	$T=150 \mathrm{~K}$
$\alpha=104.435(6)^{\circ}$	Chunk, colourless
$\beta=94.885(6)^{\circ}$	$0.40 \times 0.35 \times 0.29 \mathrm{~mm}$
$\gamma=103.676(6)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan (Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.936, T_{\text {max }}=0.969$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.131$
$S=1.08$
2559 reflections
280 parameters
$V=742.57(15) \AA^{3}$
$D_{x}=1.459 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $-K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.40 \times 0.35 \times 0.29 \mathrm{~mm}$

8766 measured reflections 2559 independent reflections 1906 reflections with $I>2.0 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.8^{\circ}$

All H -atom parameters refined $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0806 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Coordinates and isotropic displacement parameters for all H atoms were refined $[\mathrm{C}-\mathrm{H}=0.86(5)-1.02(2) \mathrm{A}]$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and local programs.

Figure 1
View of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

JSP and KJH acknowledge financial support in the form of a Ball State University Internal Faculty Grant.

References

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Patai, S. (1971). The Chemistry of the Azide Group, pp. 331-383. New York: Interscience.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sustmann, R. \& Trill, H. (1972). Angew. Chem. Int. Ed. Engl. 11, 838-840.
Yadav, J. S., Subba Reddy, B. V. \& Geetha, V. (2002). Synlett, pp. 513515.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

